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Summary

Within each individual, the adaptive immune system generates a reper-

toire of cells expressing receptors capable of recognizing diverse potential

pathogens. The theoretical diversity of the T-cell receptor (TCR) reper-

toire exceeds the actual size of the T-cell population in an individual by

several orders of magnitude – making the observation of identical TCRs

in different individuals extremely improbable if all receptors were equally

likely. Despite this disparity between the theoretical and the realized

diversity of the repertoire, these ‘public’ receptor sequences have been

identified in autoimmune, cancer and pathogen interaction contexts.

Biased generation processes explain the presence of public TCRs in the

naive repertoire, but do not adequately explain the different abundances

of these public TCRs. We investigate and characterize the distribution of

genomic TCR-b sequences of naive CD8+ T cells from three genetically

identical mice, comparing non-productive (non-functional sequences) and

productive sequences. We find public TCR-b sequences at higher abun-

dances compared with unshared sequences in the productive, but not in

the non-productive, repertoire. We show that neutral processes such as

recombination biases, codon degeneracy and generation probability do

not fully account for these differences, and conclude that thymic or

peripheral selection plays an important role in increasing the abundances

of public TCR-b sequences.

Keywords: biased recombination; public; repertoire; selection; sharing;

TCR.

INTRODUCTION

The adaptive immune system relies on the generation of

a diverse receptor repertoire to maximize the chance of

detecting potential pathogens. T-cell receptors (TCRs)

mediate detection of pathogens by recognizing peptides

presented by the major histocompatibility complex

(MHC) on most nucleated cells. The richness of the TCR

repertoire (>1015 distinct TCRs possible in mice1) relative

to the number of T cells (estimated 107 naive T cells in

an individual)2,3 makes TCRs common to multiple indi-

viduals implausible at face value—yet numerous clinically

relevant public TCR sequences have been reported.4 Pub-

lic TCRs may effectively defend against frequently

encountered pathogens, but public responses also place

strong selective pressure on rapidly mutating pathogens

to evade recognition by the most common TCRs.5

Beyond pathogen responses, public TCRs have been asso-

ciated with autoimmune conditions,6,7 better health out-

comes in B-cell lymphoma8 and drug hypersensitivity

reactions.9 The origin of such shared or ‘public’ TCRs

remains unclear, but both the formation and maintenance

of the TCR repertoire contribute to the appearance of a

public subset of TCRs.

While the potential diversity of the TCR repertoire is

vast, biases in V(D)J recombination and selection con-

tribute to observations of public TCRs. The a and b
chains of each TCR are formed by recombining one each

of V, D (for the b chain), and J gene segments from sepa-

rate genomic loci. Unequal gene segment usage with cor-

relations between V and J gene segment usage leads to

more frequent TCRs that contain a particular V and J

gene segment combination.10 Gene segment usage biases

are the strongest in inbred mice11 and in monozygotic

Abbreviations: MHC, major histocompatibility complex; TCR, T-cell receptor
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twins.12 Random insertion or deletion of nucleotides at

the gene segment junctions contributes most of the diver-

sity of the TCR repertoire.13 Even with the random

nucleotides at the gene segment junctions, however,

sequences with fewer insertions or deletions and/or syn-

onymous codon usage lead to a perceived generation bias

for public sequences through convergent recombina-

tion.14,15 Together, biased processes in V(D)J recombina-

tion lead to inferred generation probabilities of each

unique TCR-b that vary by several orders of magnitude.10

Selective pressures on different TCRs further shape the

frequency of TCRs in the repertoire. In the thymus, posi-

tive and negative selection through self-peptides presented

by the MHC (self-pMHC) filters out non-reactive and

highly self-reactive receptors from the developing reper-

toire.16,17 Thymic selection thus increases the frequency

of TCRs that have a slight affinity for self-pMHC.18 Out-

side the thymus, peripheral selection similarly shapes the

repertoire. The abundance of certain T-cell clonotypes

may increase by homeostatic proliferation via interactions

with self-pMHC19 or receptor-independent mechanisms

that increase survival and decrease death rates.20,21

Observational deep sequencing studies have found

numerous public TCR-bs in unrelated individuals,22,23

although the extent of sharing varies with sampling depth

and cohort size.10,14,15,24 The TCR-b monomer con-

tributes significantly towards antigen recognition25,26 and

can identify unique TCR clones,27,28 although the paired

abTCR can reveal antigen specificities that differ from

the specificity inferred by the TCR-b alone.27 Previous

studies of the TCR repertoire have generally sequenced

mRNA from antigen-experienced T cells as opposed to

naive T cells and have not segregated by lineage (CD8 vs

CD4), even though these subsets behave differently during

immune surveillance and response.29–31 While recent or

past antigen exposure increases the frequency of clonally

expanded T cells and the probability of observing shared

receptor sequences, any shared antigen-experienced TCR

must have started as a shared naive TCR. Further, the fre-

quency of naive cells strongly influences the immune

response upon pathogen exposure,32 which means a cor-

relation between naive TCR sharing and frequency could

have an out-sized effect on the immune response. Studies

of repertoires from bulk T cells can be confounded by the

dynamics experienced by different T-cell subsets (CD4 vs.

CD8),33 which can be avoided by cell sorting prior to

sequencing. Finally, mRNA sequencing data bias data

towards productive TCR sequences, which reflect both

recombination biases and selective forces; these forces can

be separated by sequencing genomic DNA and examining

non-productive TCR sequences, which do not encode

functional receptors and do not experience selection.

Genomic DNA from T cells can be used to divide

recombined sequences into ‘productive’ and ‘non-produc-

tive’ (i.e. frame shift or early stop codon) groups. These

non-productive TCRs may be sequenced from T cells

where a subsequent, independent rearrangement of the

alternate chromosome resulted in a productive receptor.

Selection operating on the productive receptor also indi-

rectly drives the abundance of the non-productive rear-

rangement (if it exists) within the same T cell, but non-

productive sequences as a whole should strictly reveal the

effects of the generation process because non-productive

sequences have an equal chance to be associated with a

more favoured or less favoured productive TCR.10,34 A

further advantage of genomic DNA sequencing reads is

their independence from TCR mRNA transcription levels,

thus revealing the differential abundance of T cells.35

Here, we investigate how generation and selection pro-

cesses contribute to a public repertoire by sequencing the

CDR3b genomic region from sorted naive CD8+ T cells

from three inbred mice. As these mice share the same

MHC alleles, selection on self-pMHC during T-cell devel-

opment acts equally in the three individual mice. Statisti-

cal models trained on non-productive sequences have

been able to predict how many individuals share a partic-

ular amino acid TCR-b sequence,24,36 but do not fully

address abundances within a repertoire. While past work

has focused on sharing based on TCR presence/absence,

we take a more fine-scale view of diversity and also con-

sider the frequencies of TCRs within each individual. We

elucidate the effects of generation biases and TCR-medi-

ated selection by comparing the TCR-b abundance distri-

butions between productive (affected by both selection

and generation biases) and non-productive (only affected

by generation biases) subsets.

MATERIALS AND METHODS

Mice and cell sorting

We analysed the CDR3b region of naive T cells sampled

from three C57BL/6 mice purchased from the Jackson

laboratories (Bar Harbor, ME) and maintained under

specific pathogen-free conditions at the ASU Biodesign

Institute animal facilities. Mouse experiments were

approved by the Institutional Animal Care and Use Com-

mittee at Arizona State University. We isolated CD8+ T

cells from spleens of 6- to 8-week-old donor mice by pos-

itive immunomagnetic cell sorting (>95% CD8+, >95%
CD44lo; Miltenyi Biotec) as previously described.37 We

prepared single-cell suspensions from splenocytes as pre-

viously described.38 Briefly, we lysed erythrocytes with

ammonium chloride lysis (ACK) buffer purchased from

Lonza (Allendale, NJ) and performed FACS staining as

previously described39 in 96-well plates with fluo-

rochrome-labelled monoclonal antibodies: anti-CD8

(clone 53-6.7), anti-CD44 (clone IM7) and anti-CD4

(clone GK1.5), purchased from BD Pharmingen (San

Diego, CA) or eBioscience (San Diego, CA). Samples were
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then fixed in 1% paraformaldehyde solution, immediately

acquired on a BD LSR II Fortessa flow cytometer (San

Jose, CA) and analysed using FlowJo software (Tree-Star,

Ashland, OR).

TCR sequencing and bioinformatic analysis

Three samples consisting of 1�16 9 106, 1�34 9 106 and

1�48 9 106 CD8+ sorted cells from C57BL/6 mouse

spleens were shipped to Adaptive Biotechnologies (Seattle,

WA) for standard ImmunoSEQ TCR-b profiling.40

Briefly, genomic DNA was amplified by multiplex PCR

with equimolar pools of 45 forward V primers and 13 J

reverse primers, covering the known functional murine

TCR-b V and J gene segments. Additionally, each primer

contains at the 50 end the universal forward and reverse

primer sequences compatible with the base Illumina

sequencing technology. Sequencing was performed on a

MiSeq analyser using 2 9 100 paired end reads, resulting

in ~60 nucleotide-long reads where each read uniquely

identifies a TCR-b sequence using the CDR3b region with

V and J gene segment identities.40 Read data were pro-

cessed by ImmunoSEQ analyser for correction of PCR

biases informed by synthetic repertoires,41 counting read

abundances,42 and identification of germline gene seg-

ments, the number of insertions and deletions and func-

tional status with standardized definitions from the

international ImMunoGeneTics information system.43 We

defined a nucleotide TCR-b by the full sequence read,

and the amino acid TCR-b by the V and J gene segment

identities with the translated CDR3b region of the read.

Model testing

We calculated empirical cumulative distribution functions

(ECDFs) of the unique TCR abundances from a pooled

data set of all three mice, dividing the repertoire by shar-

ing level (private to the individual, shared among two

individuals, shared among all three individuals) and func-

tional status (productive vs. non-productive). In this

application of ECDFs, similar to species-abundance distri-

butions,44 we treat each unique TCR-b as a separate spe-

cies and examine the abundance distribution. Specifically,

the x-axis denotes the abundance of TCR-bs, and the y-

axis denotes the cumulative fraction of unique TCR-bs
with abundance equal to or less than the x-axis value. A

repertoire containing very low-abundance TCR-bs results

in a right-shifted ECDF, while a repertoire dominated by

high abundance results in a left-shifted function. We

assessed the uncertainty of ECDFs in different subsets of

sequences with 100 bootstrap replicates of the repertoire.

For each replicate, we sampled the same number of total

TCR-bs from each mouse (equal to the smallest number

of total reads per mouse in the original data), recalculat-

ing abundance distributions of unique TCR-bs in each set

of bootstrap replicates. For unique TCR-bs shared across

individuals in the pooled data set, we randomly chose

one TCR-b abundance (of the abundances for TCR-b
found in the two or three mice) to avoid the reduction in

variance that would be caused by using the mean or med-

ian of the sequence abundance in multiple mice. Boot-

strapped ECDFs of the individual mice are shown in

Figure S1. Because the productive subset was more deeply

sampled compared with the non-productive subset, we

also performed the same analysis with down-sampled

productive sequences.

We performed non-parametric tests to estimate the sta-

tistical significance of the correlation between abundances

of shared TCR-bs and dissimilarity in gene segment

usages between subsets of the sampled repertoires. For

abundance correlations of pairwise shared TCR-b, we

permuted the abundances of TCR-bs in one of each pair

of mice, recalculating the Pearson correlation coefficient

1000 times. For gene segment usage, we compared subsets

of TCR-b based on binary sharing (private vs. shared)

and functional status (productive vs. non-productive).

We compared the V and J gene segment usage proportion

of unique TCR-bs across each subset, calculating the sum

of squared deviation in gene usage proportions between

each subset. We estimated 95% confidence intervals of

the sum of squared deviation in gene usage by 100 boot-

strap replicates of individual repertoires, visualizing the

gene usage differences as a heat map.

In addition to the larger sample size of productive

sequences compared with non-productive sequences, we

also considered the broader length distributions of non-

productive sequences compared with productive

sequences. By definition, the TCR-b lengths of productive

sequences are multiples of three base pairs (e.g. 27, 30,

33), while the lengths of non-productive sequences are

not restricted in the same way (e.g. 27, 28, 29, 30, 31).

Therefore, non-productive sequences as a whole have

more opportunities for sharing. When calculating sharing

proportions, we correct for this length effect by selecting

non-productive sequence lengths with the most sequences

within one base pair of the corresponding productive

sequence length (e.g. 26 in non-productive and 27 in pro-

ductive).

Calculating the public fraction of a repertoire

We calculate the estimated public fraction, defined as the

fraction of the repertoire with size N that contains

sequences with a generation probability greater than 1/N,

according to equation 11 in Ref. 45. We approximated

the integral over the density of sequence generation prob-

ability by the rectangle approximation, taking kernel den-

sity estimates over 215 equally spaced points for the

generation probability distribution of unique sequences

shown in Figure 4. We calculated the public fraction over
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a range of repertoire sizes for generation probability dis-

tributions of different subsets of the repertoire, including

productive-only and non-productive-only.

Estimating TCR generation probability with IGoR

We applied IGoR45 to estimate generation probabilities of

TCRs with a recombination model inferred from the

non-productive sequences of our data. For the IGoR

alignment step, we supplied the set of germline IMGT V

and J genes for genomic templates,43 setting V and J gene

offset bounds for where the genomic templates may align

given the short length of our reads (V offset: �350,

�150; J offset: 0, 80). With default parameters, we

inferred a recombination model given the non-productive

sequences of each mouse individually and together, and

evaluated the generation probability of the observed TCR

sequences.

RESULTS

Throughout our analysis, we compare sequences in the

productive and non-productive naive repertoires to reveal

the effects of thymic and peripheral selection beyond the

biases in the generation process. We begin by examining

the unique sequences in a pooled data set from all three

mice and move on to analysing abundances.

Productive TCR-b sequences are shared more than
non-productive sequences

If we define a shared TCR-b as one that is found at any

frequency in at least two of our three mice, then 3�3% of

the unique productive nucleotide sequences were shared,

while only 0�65% of the unique non-productive sequences

were shared (see Table 1). We consider that, exclusive of

other factors, frame shifts lead to an approximate 1:2

ratio of the number of possible productive sequences to

possible non-productive sequences, reducing the probabil-

ity of sharing in the non-productive repertoire. Therefore,

we might expect twofold less sharing in the non-produc-

tive repertoire. In addition, deeper sampling of produc-

tive relative to non-productive sequences further

contributes to the shortfall in the non-productive reper-

toire. To account for the latter factor, we down-sampled

productive sequences from each individual to the size of

each individual non-productive repertoire and recalcu-

lated sharing proportions for 1000 bootstrap replicates.

From this procedure, we still saw a higher sharing pro-

portion of 3�23% in the productive repertoire, with a

95% bootstrap confidence interval for the difference

between productive and non-productive sharing propor-

tions of [2�60%, 2�62%], which remains well more than

twofold the sharing proportion in the non-productive

repertoire (0�65%).

A more subtle difference in TCR-b length distribution

between productive and non-productive subsets may also

affect sharing proportions. Productive sequences are con-

strained to have TCR-b lengths in multiples of three,

while non-productive sequences include out-of-frame

sequences. Because non-productive sequences have more

length categories, comparisons between productive and

non-productive sequences should be restricted to those

with similar lengths. We thus down-sampled the produc-

tive subset and selected non-productive TCR-bs with sim-

ilar lengths from each mouse as described in Methods.

When we calculate the sharing proportion in 1000 boot-

strap samples, we still observe a higher sharing propor-

tion in productive sequences compared with non-

productive sequences (2�49% [2�47, 2�51% 95% CI of dif-

ference between productive and non-productive sharing

proportion]).

This pattern also holds when we translate the TCR-b
nucleotide sequences into amino acids and consider

amino acid clonotypes composed of the V gene segment,

J gene segment and CDR3b amino acid sequence. Codon

degeneracy reduces the number of total unique clono-

types in both the productive and non-productive reper-

toires. Omitting out-of-frame rearrangements that cannot

be meaningfully translated further reduces the non-pro-

ductive repertoire sample size. Even after down-sampling

productive amino acid TCR-bs, the proportion of unique

shared sequences in the productive repertoire continues

to be higher than in the non-productive repertoire (mean

difference of 1�79% [1�59%, 1�99% 95% CI]).

Finally, while the results described above derived from

pooling all three mice together, we found this same pat-

tern of higher sharing proportions in the productive com-

pared with non-productive repertoires in each mouse

individually (results not shown).

Shared TCRs correlate in frequency between mice

We next sought to consider not just TCR presence/ab-

sence in sharing but also relative abundances of unique

TCR sequences. Given that clonal expansion during an

immune response occurs as an exponential growth pro-

cess,46 we compare abundances on a logarithmic scale.

Specifically, pairwise comparisons of log-transformed

abundances of shared productive TCR-bs reveal statisti-

cally significant correlation coefficients for all pairs of

Table 1. Number of unique TCR-b sequences

Sequence level Sequence status Private Two-way Three-way

Nucleotide Productive 311 524 9221 1253

Nucleotide Non-productive 139 672 857 56

Amino acid Productive 211 765 17 959 4808

Amino acid Non-productive 6115 161 16
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mice (see Figure 1A–C with Pearson’s r = 0�36, 0�43,
0�33, P < 0�001 by permutation test). Although there

were fewer non-productive sequences, the same analysis

applied to non-productive TCR-b abundances yielded

higher correlation coefficients of 0�46, 0�52, and 0�41
(P < 0�001 by permutation test) (see Figure 1D–F).
Correlations of abundance measures show that consis-

tent, reproducible processes drive the abundances of

shared naive TCR-bs of different individuals. As non-pro-
ductive sequences are not translated into functional

receptors, their observed abundances result from repeated

generation in distinct T cells with the dynamics mediated

by the productively rearranged receptor in the same T

cell. A particular non-productive rearrangement may rise

in abundance if its partner productive rearrangement pro-

motes clonal expansion or survival. However, the inde-

pendence of V(D)J recombination between the two

chromosomes means the non-productive subset as a

whole represents neutral sequences with respect to thymic

and peripheral selection. As the abundances of sequences

in the non-productive subset result from selectively neu-

tral processes relative to the productive subset, the higher

correlation of non-productive sequences illustrates how

consistent generation biases across individuals contribute

to TCR-b sharing. While consistent receptor generation

processes may explain the higher correlations in abun-

dances of the non-productive shared sequences, between-

individual differences in selective pressures may then alter

the correlation of abundances of shared productive

sequences.

Shared TCR-bs have higher frequencies than private
TCR-bs, but only for productive sequences

When we compare the frequency distributions of shared

to private TCR-bs, we observe a striking difference

between productive and non-productive sequences. The

empirical cumulative distribution function (ECDF) curves

show the distribution of TCR-b abundance frequencies of

each unique TCR-b sequence, where a sample with TCR-

bs found mostly at smaller abundances would have a

right-shifted ECDF relative to a sample with TCR-bs
found at higher abundances. In the productive repertoire,

the frequency distribution of private sequences is shifted

significantly lower than two-way shared sequences, which

in turn is shifted significantly lower than three-way
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Figure 1. Abundances of shared TCR-bs are positively correlated in pairwise comparisons of samples from different mice. (A–C) Log abundances

of productive sequences for different pairs of mice with Pearson’s r = 0�36, 0�43 and 0�33 (P < 0�001), respectively, are shown. (D–F) The same

pairwise comparisons for non-productive sequences with Pearson’s r = 0�46, 0�52 and 0�41 (P < 0�001), respectively, are shown. We estimate P-

values by 1000 permutations of TCR-b abundances. We plot a linear regression line with 95% confidence intervals
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shared sequences (Figure 2). In the non-productive reper-

toire, we observe the opposite pattern with the frequency

distribution of private sequences being higher than two-

way shared sequences, which in turn is higher than three-

way shared sequences. These patterns also hold with

amino acid clonotypes (see Figure S2), although the result

is not significant for non-productive translated sequences,

in part due to small sample sizes.

We further confirmed that these results were not driven

by sequencing error-prone rare T cells or contamination

from high-abundance memory T cells. As approximately

50% of all unique sequences were found in copy numbers

of 10 or less, we analysed the subset of data that contain

sequences with read abundances greater than 10 (Fig-

ure S3B). We observed the same shifts in distributions in

the productive repertoire without low-abundance

sequences, indicating the expansion of specific T cells car-

rying certain TCR-b sequences drove the differences.

Separately, antigen-experienced memory TCRs are

expected to be found at high abundances, some of which

may contaminate the naive TCR data due to imperfect

sorting. To control for this possibility, we analysed the

subset of data that contain sequences below the 95th per-

centile abundance of TCR-bs in each individual. Again,

we observed the same shifts in distribution in the produc-

tive repertoire towards higher abundance as sharing

increases (Figure S3A). We performed both comparisons

while down-sampling the productive repertoire to the size

of the non-productive repertoire, to reduce the effect of

deeper sampling of productive sequences.

Possible explanations for the frequency difference in
public sequences

Given this difference in shared TCR-bs between produc-

tive and non-productive subsets, we looked for systematic

differences between the two repertoires that might explain

the increased abundances of shared sequences in the pro-

ductive repertoire. Increased abundances could be driven

by the same factor as increased sharing—namely

increased rates of generation. Factors potentially affecting

a TCR-b generation rate include the number of added

nucleotides at V(D)J junctions, gene segment usage and

codon degeneracy. We compared subsets of the repertoire

and found different aspects of the generation process that

impact sharing rates, but do not fully account for abun-

dance differences between shared and private TCR-bs of

the productive and non-productive repertoires.

In general, shorter TCR-b sequences are more likely to

be shared across multiple individuals because they have

fewer non-templated inserted nucleotides to be matched

at the V-D and D-J junctions by the process of conver-

gent recombination.14,15 The higher rates of convergent

recombination of shorter TCR-bs increase their frequen-

cies in the repertoire. Unique productive and non-pro-

ductive sequences in general had similar lengths, although

non-productive were marginally longer. Within both sub-

sets, shared sequences were shorter than private

sequences, from a mean of 37 (private) to 35�4 (shared)

nucleotides in non-productive and 36 to 34 nucleotides

in productive sequences (Figure 3). The decrease in size

for productive sequences was significantly greater than for

non-productive (P < 0�001, t-test for mean difference in

productive is equal to mean difference in non-produc-

tive), although the magnitude of the effect was small.

Biased gene segment usage itself can make certain

sequences more frequent.47 We examined V gene segment

usage as a function of degree of sharing in both reper-

toires to determine how recombination biases may influ-

ence public sequences, specifically whether gene usage

frequencies differed between public and private TCRs. We

measured the sum of squared deviation of gene usages

across sequences within the same functional status but

across different sharing levels and vice versa over 1000

bootstrap replicates. We found the greatest gene usage

difference in the shared sequences between productive

and non-productive subsets, while the magnitude of dif-

ference was much smaller within productive or non-pro-

ductive sequences (see Figure S5A and B depicting mean

deviations). We observed similar differences for the J gene

segment usage, but with larger magnitudes of squared

deviations. These results show that gene usages were very

similar across subsets of the repertoire, except for

nonproductive
productive
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between shared productive and shared non-productive

subsets.

In addition to gene segment usage and TCR-b length,

other more subtle factors can influence the generation

probability10,24 and thus the sharing probability of TCRs.

We applied IGoR45 to estimate the generation probabili-

ties of both productive and non-productive sequences, fit-

ting the model to the non-productive sequences in our

samples. IGoR predicts private sequences to have a lower

inferred generation probability than public sequences

(Figure 4), although inferred generation probability did

not correlate with sequence abundances (Figure S4A; pro-

ductive adjusted r2 = 0�000025, non-productive adjusted

r2 = 0�0063). Additionally, we found that when binned by

inferred generation probabilities such that the total num-

ber of unique TCR-bs was the same in each bin (~2600
per non-productive bin, ~6200 per productive bin),

sequences were more likely to be shared as generation

probability increased (Figure S4B). Generation probabili-

ties correlate well with the sharing of unique sequences in

both the productive and non-productive repertoire, but

cannot fully explain the increase in frequency of shared

productive sequences.

While our observations of shifts in the frequency distri-

bution of TCR abundance focused on nucleotide

sequences, we also evaluated how convergent recombina-

tion at the amino acid level affected sharing through

codon degeneracy.14,15 Analysis of unique non-productive

amino acid TCR-bs was limited due to a smaller number

of in-frame TCR-b nucleotide sequences. We found that

for amino acid TCR-bs, 97% of shared, unique produc-

tive sequences were encoded by more than one nucleotide

sequence, while only 93�3% of shared, unique non-pro-

ductive sequences were multiply-encoded. In both pro-

ductive and non-productive repertoires, the mode of the

number of degenerate nucleotide sequences per amino

acid TCR-b increases, from only one nucleotide sequence

per amino acid sequence in the private subset to three

nucleotide sequences per amino acid sequences in three-

way shared sequences. Further, three-way shared produc-

tive amino acid TCR-bs may be encoded by up to 20

unique nucleotide sequences (see Figure S2B). This sum-

mary, however, is confounded by the fact that a longer

amino acid TCR-b has more degenerated nucleotide

sequences and we have many more productive than non-

productive sequences in our sample. To assess the statisti-

cal significance of these differences, we down-sampled the

number of productive sequences to the number of non-

productive sequences while also limiting sequences to the

most common lengths of 35–37 nucleotides long. In this
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analysis, we did not observe a difference in the distribu-

tion of multiply-encoded sequences in the productive and

non-productive repertoire. Down-sampling excluded most

of the TCR-bs that were encoded by more than four

nucleotide sequences and led to a significant shift in the

mode of multiply-encoded TCR-bs. In general, productive

TCR-bs were more degenerate, and shared TCR-bs also

showed a higher mean degeneracy compared with private

sequences, which contribute to higher abundances. These

results for amino acid TCR-bs do not explain the

observed shifts in nucleotide sequence abundance distri-

butions.

DISCUSSION

We found that unique shared TCR-bs were over-repre-

sented in the productive repertoire of naive CD8+ T cells

in three inbred mice. The distribution of TCR-b abun-

dances revealed this pattern even more strongly with

shared sequences having higher abundances in the produc-

tive, but not in the non-productive, repertoire. As the pri-

mary difference between productive and non-productive

sequences is that the former are expressed in protein form,

these shared productive receptors presumably increased in

abundance through thymic and peripheral intra-individual

selection pressures, in addition to the shared generation

biases common between the three mice.

Alternatively, differences between the private and

shared TCR-b sequence abundance distributions could

arise from only generation biases or technical artefacts

with no contribution from intra-individual selection. We

control for generation biases by directly comparing the

productive and non-productive repertoires in the same

individual. As both repertoires are generated via the same

process, generation biases should be common as well, and

thus, comparisons between productive and non-produc-

tive repertoires should remove any bias and reveal the

contribution of selection. Similarly, while technical arte-

facts such as PCR amplification bias may increase the

apparent abundance of some sequences,41,48 such bias

should again affect both repertoires given that both have

similar V/J segment usage (see Figure S5). In an effort to

minimize the effect of PCR bias, steps in post-sequence

processing included adjustments for sequence abundances

based on V or J segment usage,40 and previous work

demonstrated the repeatability and sensitivity of the

sequencing and quantification assay in detecting specific

TCR-bs from low-abundance clones.42 Another possible

technical artefact could arise from sequencing errors that

generate a large number of rare and false receptor

sequences. We controlled for this possibility by perform-

ing our analysis restricted to only higher abundance

sequences and found the same qualitative results (see Fig-

ure S3B). Contamination from memory T cells may also

influence shared TCR abundance distributions, as mem-

ory T cells are expected to be found at high abundance

and may then share TCR sequences due to exposure to

shared foreign antigens. We tested for the effect of mem-

ory contamination by excluding high-abundance reads

and recalculating ECDFs, and again found similar trends

of increased TCR abundance as sharing increases in the

productive but not in the non-productive subset.

While selection is necessary to explain the relative dif-

ferences between productive and non-productive reper-

toires, prior research has shown that convergent

recombination plays a key role in driving shared TCR-b
sequences on an absolute scale.14 Indeed, the formation

of public sequences can be attributed to biases in gene

segment usage and shorter TCR-b lengths that allow

easier convergent recombination and thus a higher gener-

ation probability,49,50 particularly between genetically

identical individuals.12 Given this expectation, we exam-

ined our data for TCR-b length and gene segment usage

biases.

First, we compared the TCR-b length distributions in

shared and unshared repertoires and found that shared

sequences were shorter in both the productive and non-

productive repertoires. The productive sequences were on

average one nucleotide shorter than non-productive,

which contributes towards more sharing in the productive

repertoire as a whole compared with the non-productive

repertoire. At the same time, non-productive sequences

could be found at more length categories than productive

sequences, which may inflate sharing in the non-
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Generation probability inferences failed for approximately 5% of the

unique sequences in each functional subset. Shared TCR-bs in both

non-productive (860 sequences) and productive (10 144 sequences)

subsets show a narrower distribution of generation probabilities cen-

tred on a higher value. Private TCR-bs in the productive (297 845

sequences) and non-productive (132 644 sequences) show similarly

broad distributions of generation probabilities centred two magni-

tudes lower than the shared TCR-bs

ª 2021 John Wiley & Sons Ltd, Immunology, 162, 464–475 471



productive repertoire as a whole. We corrected for differ-

ences in length distribution and sample size between pro-

ductive and non-productive repertoires and found a

higher sharing proportion in the productive repertoire

compared with the non-productive repertoire, showing

that functional status drove total sharing probability. Sec-

ond, we compared gene segment usages between the four

categories of the repertoire. We expected gene usage dif-

ferences between shared and unshared sequences to be

small in the non-productive subset, because their presence

should only be driven by a common generation processes.

We found that the largest gene segment usage differences

were between productive and non-productive sequences,

regardless of the sharing levels (Figure S5). The gene

usage differences between shared and unshared sequences

in the productive repertoire were the smallest of all the

comparisons, showing that even if gene segment usage

influences the functional status of a sequence, it does not

have a large effect on whether a sequence is public or pri-

vate within the productive repertoire. These features of

length and gene usage were insufficient to predict whether

a TCR-b was public or private with a machine learning

classifier.51

In addition to examining the directly observable char-

acteristics of our data, we also applied a probabilistic

generative model of VDJ recombination using the soft-

ware IGoR, which captures more subtle aspects of the

recombination process, to estimate TCR-b generation

probabilities.10,45 As the IGoR model does not use the

observed abundances, this approach provided indepen-

dent evidence for the action of selection. Although the

inferred probabilities of our sequence data were not pre-

dictive of sequence abundance in the non-productive or

productive repertoires (Figure S4A), we found that the

proportion of shared sequences increases with higher

quantiles of generation probability (Figure S4B). We also

observed several TCR-bs with relatively high abundances

yet relatively low generation probabilities (Figure S4A).

These generation probability estimates were robust to

whether recombination model parameters were inferred

from the non-productive sequences of individual mice

or all mice together. These results suggest minor biases

inside the IGoR estimation process or the abundance

estimation process. We also considered how shifts in the

distribution of generation probabilities (Figure 4) influ-

ence estimates of the fraction of ‘public’ sequences,

defined as sequences that have generation probabilities

greater than the reciprocal of the total number of

sequences.24 Using bootstrapped samples of generation

probability distributions from different subsets of the

repertoire illustrated in Figure 4, we find that the highest

public fraction came from repertoires with generation

probability distributions similar to the empirically public

sequences (Figure S6A), but that the productive subset

as a whole shows only a small, but statistically

significant, increase in public fraction compared with the

non-productive subset (Figure S6B).

These results show that large shifts in the generation

probability distribution lead to increases in sharing pro-

portions, but do not fully account for opposite trends

of the abundance distributions (Figure 2) nor the differ-

ence in observed sharing proportions between produc-

tive and non-productive subsets. Indeed, introducing a

sequence-independent selection coefficient improved the

predictions of sharing numbers in empirical samples.24

Abundance distribution shifts of TCR-bs in the produc-

tive subset arise from both biases in generation and

biases in proliferation or survival, even for naive T

cells.28,52 We cannot distinguish between the mecha-

nisms of enhanced proliferation or survival of shared T

cells, which could arise through several mechanisms.53

As young mice have relatively short-lived T cells and

strong thymic output,54 preferential selection for attri-

butes inherent to a new T cell may afford a relative fit-

ness advantage before T-cell adaptation dominates.53

This preferential selection likely involves self-antigens,55

which in turn suggests that shared sequences may play

a role in autoimmunity. Despite their association with

pathology, receptors with self-reactivity may be impor-

tant to clearing infections, analogous to autoimmune-

recognizing antibodies,56 where the strength of self-

recognition also correlates with reactivity towards for-

eign antigens.57 Experiments have shown how the rela-

tive strength of self-pMHC-TCR interactions drives

proliferation of adoptively transferred naive CD8+ T

cells, which compete among T cells bearing different

receptors.58 Besides antigen recognition, differences in

peptide availability and/or MHC expression may also

contribute to differential selective pressures.59,60 Experi-

mental work in humanized mouse models found when

compared to unshared TCR-bs, public TCR-bs were

enriched for type 1 diabetes-associated TCRs and higher

cross-reactivity to different MHC alleles, but potentially

weaker interaction with self-peptides (allowing for

escape from negative selection).61

We conclude that selection contributes towards sharing

between individuals, given the generation of a particular

sequence, but do not quantify the relative contribution

between different forms of selection and generation

biases. Although shared immune history drives receptor

sharing in the repertoire as a whole,25,62 by restricting our

analysis to sorted naive T cells we exclude selection due

to experience with common foreign antigens. For naive T

cells, only TCR-mediated interactions are expected to give

certain T cells a selective advantage, as advantages from

non-TCR effects (such as cytokine sensitivity) should be

uncorrelated with a specific TCR-b. Our use of the TCR-

b abundance information strengthened our conclusions

and revealed dynamics in the naive T-cell repertoire that

would be largely hidden by examining only unique
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sequences. Paired abTCR sequencing63–66 would provide

a more complete picture of the public repertoire,

although shared abTCR may be exceedingly rare except

for epitope-specific responses.67,68 Further, few non-pro-

ductive a chains may be sampled due to the potential for

multiple rescue attempts of a non-productive TCR-a
locus rearrangement.69 Recent work identified 26 paired

abTCRs shared between any two of five individuals from

high-throughput single-cell sequencing of CD4+ and

CD8+ T cells, which shows biases in generation and pair-

ing of the individual chains in addition to convergent

selection of non-naive T cells.71 While technical biases

pose a challenge to using abundance data, comparison of

productive and non-productive repertoires provides a

means to overcome these biases and reveals how within-

individual selection contributes to TCR-b sharing.
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Figure S1. Empirical cumulative distribution of nucleo-

tide read abundances, with 100 bootstrapped replicates

for individual mouse samples. Each individual was resam-

pled independently in the bootstrap replicates based on

individual read abundances. Cumulative distributions of

abundances in individual mice showed similar trends to

the pooled data. As sharing level increases in the produc-

tive repertoire, the distribution shifts towards higher

abundances, but the opposite trend occurs in the non-

productive repertoire.

Figure S2. (A) ECDF for amino acid TCRb sequences

with bootstrap resampling. (B) Proportion of unique

amino acid clonotypes that are encoded by x unique

nucleotide sequences, divided by sharing level and func-

tional status. The vast majority of amino acid sequences

are encoded by only one nucleotide sequence in the pri-

vate repertoires, but as sharing increases, the mode of the

number of degenerate nucleotide sequences per amino

acid sequence increases.

Figure S3. ECDFs of productive and nonproductive

nucleotide sequences filtered for both high and low-abun-

dance sequences and with productive sequences down-

sampled to the size of the nonproductive sequences show

abundance shifts consistent with observations of the full

data. In (A), ECDFs were drawn from 100 bootstrap sam-

ples excluding any sequence with an abundance smaller

than 10 copies, therefore removing potentially error-

prone reads. In (B), ECDFs were drawn from 100
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bootstrap samples excluding any sequence with an abun-

dance larger than the 95th percentile in each mouse,

removing potential memory cell contaminants. Both tests

show that the shifts of abundances are not driven by

reads originating from potential memory T cell contami-

nation nor from erroneously sequenced unique reads.

Figure S4. Inferred generation probability does not

fully explain nucleotide sequence abundance nor sharing

proportion. (A) shows the correlation between TCRb
abundance and inferred generation probability, split by

functional status and mouse. Plotted with log-trans-

formed axis and simple linear regression on transformed

data. (B) shows the proportion of sequences that are

shared, binned by generation probability such that each

bin has approximately the same number of unique

sequences (approximately 2600 per nonproductive bin

and 6200 per productive bin). 95% proportion confidence

intervals were estimated by Wilson’s method. Sharing

proportions increase with generation probability.

Figure S5. Heat map of sum of squared deviation of

gene usage proportions of unique sequences between

subsets of the repertoire for (A) V gene segments and (B)

J gene segments. (C) shows the distribution of V gene

segment usage for unique sequences in the productive

and nonproductive repertoire, split by sharing level.

Figure S6. Inferred public fraction of receptors for

repertoire sizes ranging from 107 to 109, calculated from

generation probability distributions of (A) four subsets

the sampled repertoire, and (B) productive and nonpro-

ductive subsets as a whole. We used the expression

derived in Elhanati et al., 2018 for the expected public

fraction, computing the density of sequences in each bin

of generation probability from our four (or two in panel

B) empirical distributions of generation probability and

midpoint approximation of the integral. We downsam-

pled the generation probability distributions for the pro-

ductive sequences to the size of the nonproductive

sequences and calculated the public fraction for 100 boot-

strap replications.

Table S1. Number of unique (and total) TCRb
sequences per mouse. Nonproductive amino acid

sequences included only in-frame (stop codon) sequences.
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